
College Mathematics with Lestrade

M. Randall Holmes

June 5, 2020

A note: To make this look more like an undergraduate discrete math text,
it needs much more substantial comment on the Lestrade text given in later
sections. There should be enough discussion that the Lestrade text can be
seen to implement the English discussion. I am quite interested in so adorning
it: it is to be expected that this will happen.

1 Introduction

This book is intended to introduce college level discrete and foundational
mathematics to the Reader with the help of a companion, the Lestrade Type
Inspector, whom we will familiarly call Inspector Lestrade.1 Lestrade is a
piece of software, a “dependent type checker”. The Reader doesn’t need to
know this, although she will discover something about this in the course of
her encounters with him. Dialogues with Lestrade will be embedded in the
text to illustrate our points, and the Reader will be told in due course how
to initiate dialogues with Lestrade herself.

1I am being disingenuous here, of course. My previous published book pretends to be
an elementary set theory textbook, though it is nothing of the sort. It could be used as
such, and it would further my aims if this book could be refined to the point where it
could actually be used for the imagined purpose, as well.

1

2 Natural Numbers

We will begin in a very sensible place for discrete mathematics: we will
introduce the usual natural numbers, which, following the ancient Greeks,
for us start with 1 and continue from there in single steps:

1, 2, 3, 4, 5, . . .

You should always be suspicious of a mathematician when they write
You should suspect that they are cheating.

We attempt to be more honest, and introduce our friend the Inspector.

>> Inspector Lestrade says:

>> Welcome to the Lestrade Type Inspector,

>> full version of 8/20/2016 (update to rewrited to be tested)

>> 2:30 pm Boise time

% Lestrade text supporting discrete math text.

construct Nat type

>> Nat: type {move 0}

construct 1 in Nat

>> 1: in Nat {move 0}

declare n in Nat

>> n: in Nat {move 1}

construct Succ n in Nat

>> Succ: [(n_1:in Nat) => (---:in Nat)]

2

>> {move 0}

In this dialogue with the Inspector, we first tell him that there is a type
of mathematical object which we call Nat (the natural numbers). We tell the
Inspector that there is a natural number called 1. We then make a different
move (the use of the declare command instead of the construct command
signals this) and introduce a natural number variable n. We do this in order
to state that there is a function Succ which takes any natural number n to
a natural number Succ n (its successor). We may write σ(n) instead of
Succ n when talking to the Reader rather than to the Inspector.

There are some obvious things that we can do.

define 2 : Succ 1

>> 2: [(Succ(1):in Nat)]

>> {move 0}

define 3 : Succ 2

>> 3: [(Succ(2):in Nat)]

>> {move 0}

define 4 : Succ 3

>> 4: [(Succ(3):in Nat)]

>> {move 0}

define 5 : Succ 4

>> 5: [(Succ(4):in Nat)]

>> {move 0}

3

The Inspector knows how to implement the time-honored mathematical
practice of defining new symbols. These will do to go on with for now.

The Reader should have no illusions. At this point Lestrade knows very
little about natural numbers. They could, for all he knows all be the same
object 1 with Succ 1 = 1. Or they could tidily close up into the little circle
of five objects, with Succ 5 = 1. Or more confusingly, 1, 2, 3 might all be
different but Succ 5 = 4. We will succeed in briefing the Inspector so that
he can rule out these curious possibilities, but this requires a little discussion
of logic.

4

3 A first introduction to objects and func-

tions

The Inspector sees a world inhabited by objects and functions. Objects and
functions are of more or less complicated sorts.

The sorts of objects are best discussed first: an object is either a propo-
sition (of sort prop) or the proof of some proposition p (of sort that p) or
a type label (Nat is a type label) of sort type or an untyped mathematical
object (of sort obj) or an object of a mathematical type labelled by a type
label tau (such an object is of sort in tau). The mathematical objects we
introduce to the Inspector in this narrative will usually be typed, but we may
make some use of obj.

A function will take a fixed number of inputs (which will be objects or
functions of stated sorts) and produce an object output of a stated object
sort. The sort of a function (these can be quite complex) is determined by the
sorts of its input and output. For example, Succ belongs to a sort inhabited
by functions which take an input of type Nat and output an object of type
Nat.

We can define new functions just as we defined new objects above:

define Addtwo n : Succ Succ n

>> Addtwo: [(n_1:in Nat) => (Succ(Succ(n_1)):in Nat)]

>> {move 0}

The function Addtwo applies Succ twice, and you can see that as expected
it has the same sort as Succ.

Our method of defining functions parallels the very familiar way of defin-
ing functions in algebra: f(x) = x2 + 1, for example. In some sense Lestrade
is entirely driven by the way it handles variables and function definitions,
and with this in mind we give examples which bring out features we will use.

declare m in Nat

>> m: in Nat {move 1}

5

For what follows, we need another natural number variable, so we declare
it. Notice the annotation move 1. At any point in a Lestrade session, one
is at a particular “move” (indexed by a non-negative integer). If one is in
move n, everything declared at move m for m ≤ n is regarded as fixed, and
anything declared at move n+ 1 is regarded as variable (in essence, these are
“arbitrary” or “hypothetical” objects which may be presented in the future,
about which we know nothing except their sorts). Nothing is declared at
move n+ 2 or higher. 2

If we are at move n, the declare command is used to introduce objects
(not functions) at move n+ 1. This is how we declare object variables.

The construct command is used to introduce objects at move n (new
constants) in two different ways: one can construct an object declared at
move n in basically the same way one declares a variable (the declaration of
1 above is an example).

One can construct a function at move n by a command construct f

x1 ... xn : sort, in which f is a fresh identifier which will represent
the function and the names x1, ... xn are declared at move n + 1: this
is intended to postulate a primitive function f which will take any list of
arguments t1, . . . , tn with types matching those of the given parameters to
an output value of type sort.

There are some formal restrictions. None of x1,...,xn should be defined
objects. A variable xi may appear in the sorts of later xj’s or in sort: this is
what gives Lestrade a lot of its power. If some xi or sort depends on some
move n + 1 object not appearing in the argument list, the missing object
may be supplied as an argument implicitly, as we will see below; if Lestrade
cannot fill in the argument list in such a way that any dependencies of sort

2The temporal metaphor can be used to address an objection raised, for example, by
Bertrand Russell. He found it absurd to speak of an arbitrary triangle concerning which
one did not know whether it was acute, obtuse, right, etc. We think of mathematical
objects as eternal things given (to God?) in every detail. The metaphor used here suggests
that at least the view we take implicitly in Lestrade is not logically absurd. A name at
move n+1 (of an object of a given sort) is the name of an object we have not yet constructed
(or selected) or which is not yet given to us. We might not admit any actual temporality
in the realm of mathematical objects, but the ordinary logic of dealing with objects in
the real world can show us that at least we will not be led into logical absurdities. The
house we will build tomorrow will be green or not green, though we do not presently have
evidence for either condition, and at present it is arguably neither. The triangle we posit
need not be posited with all its details; these may be revealed bit by bit in subsequent
moves.

6

appear in the argument list and any dependencies of the sort of any variable
in the argument list appear earlier in the argument list, he will decline to
postulate the function.

The construct command is our vehicle for introducting axioms and prim-
itive (undefined) notions.

One can define an object or function at move n: defining an object is
straightforward (see the definitions of 2–5 above).

Defining a function has the format define f x1 ... xn : T where T

is an object term. This implements precisely the maneuver already familiar
to you in function definitions like f(x) = x2 + 1 or f(x, y) = x2 + y2.

Here are the formal restrictions. The xi’s are just as in the construct

command. The effect of such a definition is just as one would imagine from
algebra: the work of Lestrade is to determine that the term T can be assigned
a sort Tsort, then in effect execute construct f x1 ... xn : Tsort,
and insert the extra information that this function has the specific output
signalled by T (of course varying as the inputs vary, in the way indicated by
appearances of the inputs in the term T).

construct + n m : in Nat

>> +: [(n_1:in Nat),(m_1:in Nat) => (---:in Nat)]

>> {move 0}

construct * n m : in Nat

>> *: [(n_1:in Nat),(m_1:in Nat) => (---:in Nat)]

>> {move 0}

construct ^ n m : in Nat

>> ^: [(n_1:in Nat),(m_1:in Nat) => (---:in Nat)]

>> {move 0}

7

define f n : (n^2) + 1

>> f: [(n_1:in Nat) => (((n_1 ^ 2) + 1):in Nat)]

>> {move 0}

We introduce some declarations and define the function f(n) = n2 + 1
of a natural number variable n. Notice how the body of the definition of f
appears in its type information (in the same place where — appears in the
declaration of a primitive function).

Additional operations allow us to temporarily fix our current variables,
or to declare function variables.

The open command increments the move counter, so that we treat what
were variables at move n+1 as constants, and become able to declare variables
at move n+ 2.

The close command decrements the move counter, so that we discard
all move n + 1 declarations and return to viewing move n declarations as
declarations of variables. Notice that if we open, declare some variables,
then construct a function, then close, we obtain a function at move n + 1,
that is, a function variable. Defining instead of constructing the function
would give us a variable expression. Functions can have both object and
function inputs, though we allow them to have only object outputs. Reasons
for this last restriction may be discussed later.

A subtle point to notice that that when functions are declared at move n,
any defined move n+ 1 notions which appear in their sort information must
be expanded out. This can cause actual expansions when a defined function
appears in applied position, or wherever a defined object appears; when a
defined function appears as an argument to another function, it is replaced
by its own sort information (which contains the body of its definition, so
works as anonymous notation for the function).

construct Natfun2 type

>> Natfun2: type {move 0}

8

open

declare x in Nat

>> x: in Nat {move 2}

declare y in Nat

>> y: in Nat {move 2}

construct F x y : in Nat

>> F: [(x_1:in Nat),(y_1:in Nat) => (---:in Nat)]

>> {move 1}

close

construct natfun2 F : in Natfun2

>> natfun2: [(F_1:[(x_2:in Nat),(y_2:in Nat) => (---:in

>> Nat)])

>> => (---:in Natfun2)]

>> {move 0}

The preceding block is a bit technical. We declare a type of functions
with two natural number inputs and a natural number output: elements of
this type are objects constructed from actual functions of the given type using
the function natfun2. This is an indication of how we can get around any
restrictions imposed by functions having only object outputs: we can now
define a function with output in effect a function from two natural numbers
to a natural number by packaging the output with the operator natfun2.

The block also illustrates how to construct a function variable.

9

declare a in Nat

>> a: in Nat {move 1}

declare b in Nat

>> b: in Nat {move 1}

open

declare x in Nat

>> x: in Nat {move 2}

declare y in Nat

>> y: in Nat {move 2}

define g x y : (a * x) + b * y

>> g: [(x_1:in Nat),(y_1:in Nat) => (((a * x_1) +

>> (b * y_1)):in Nat)]

>> {move 1}

close

define Lincomb a b : natfun2 g

>> Lincomb: [(a_1:in Nat),(b_1:in Nat) => (natfun2([(x_2:

>> in Nat),(y_2:in Nat) => (((a_1 * x_2) + (b_1

>> * y_2)):in Nat)])

>> :in Natfun2)]

10

>> {move 0}

In this block we illustrate the Lestrade implementation of a subtle dis-
tinction between variables which we all learn about in algebra. We all know
how to read a function definition g(x, y) = ax + by, once we are told that a
and b are constants. But of course a and b are variables, just less variable
than x and y. The distinction between the move 1 variables a and b and the
move 2 variables in x and y in Lestrade implements this distinction.

Finally, the function Lincomb takes input a, b and returns the function
g(x, y) = ax + by “packaged” with the operation natfun2. Notice that the
name g (defined at move 1) is replaced with the term

[(x 2: in Nat),(y 2:in Nat) => (((a 1 * x 2) + (b 1 * y 2)):in

Nat)],

an anonymous description of the function represented by g which makes no
use of identifiers declared at move 1 (notice that the parameters x, y are
replaced by indexed dummy variables). We may make some use of notations
(x, y 7→ ax + by) when talking to our Reader; it is a notable feature of
Lestrade that the user never has to type terms of this form: functions are
always referenced by names, set by definitions analogous to f(x) = x2 + 1,
in Lestrade text written by the user.

11

4 A first introduction to propositions and proofs:

the logic of “and”

The sort prop of propositions is inhabited by statements, the sort of things
that we say, believe, conjecture, prove, disprove, etc. Any particular propo-
sition p is associated with a sort that p which we briefly name “proofs of p”
but which we might also reasonably call “evidence for p”. When we assume
a statement for the sake of argument, we are supposing that it is true (that
there is evidence for it) not that we actually have a proof for it.

There are operations on propositions, which are probably familiar to the
Reader, embodied in such humble English words as “and”, “or”, “if”, and
“not”. We can introduce these operations to Lestrade, and explain how to
construct proofs of propositions built with these operations or use evidence
for propositions built with these operations in building proofs of other propo-
sitions.

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

construct & p q : prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

We introduce propositional variables p and q (notice the use of the declare
command instead of the construct command), and use these to declare
the primitive operation of conjunction (and). When we are talking to the
Reader, we may say “p and q” or write in symbols p ∧ q instead of using

12

the Lestrade notation p & q. Lestrade requires that an operation being con-
structed or defined appear before its arguments in the command introducing
it, but Lestrade does support infix notation for operations with two argu-
ments3 as we will see in what follows. It does not support much order of
operations: one-argument operators bind more tightly, but infixes all have
the same precedence and group to the right, as in the old computer language
APL.

Of course at this point all we know about the operation is that it takes two
propositions as input and outputs a proposition. We need to be convinced
that we really are talking about “and”.

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

We introduce variables of new sorts, a piece of evidence pp for the truth
of p and a piece of evidence qq for the proof of q.

construct Conjunction pp qq : that p & q

>> Conjunction: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),

>> (qq_1:that .q_1) => (---:that (.p_1 & .q_1))]

>> {move 0}

We assert the existence of a function which takes evidence pp for p and
evidence qq for q to evidence for p∧ q. This implements a fact that we know
about the logic of “and”: we may really be getting somewhere here!

3when the first argument is not a function; Lestrade will display values of a two ar-
gument function whose first argument is not a function using infix notation. The user
may enter terms in mixfix notation (x1 f x2 ... xn instead of f x1 x2 ... xn), for
n > 2; Lestrade can parse such mixfix expressions but will never display them.

13

declare rr that p & q

>> rr: that (p & q) {move 1}

construct Simplification1 rr : that p

>> Simplification1: [(.p_1:prop),(.q_1:prop),(rr_1:that

>> (.p_1 & .q_1)) => (---:that .p_1)]

>> {move 0}

construct Simplification2 rr : that q

>> Simplification2: [(.p_1:prop),(.q_1:prop),(rr_1:that

>> (.p_1 & .q_1)) => (---:that .q_1)]

>> {move 0}

Now we introduce a variable rr which is evidence for p ∧ q and provide
a function (the first rule of simplification) which takes rr to evidence for p
and a function (the second rule of simplification) which takes rr to evidence
for q.

You will notice if you read the Lestrade dialogue carefully that each of
these functions has p and q as additional hidden arguments. The reason that
we do not have to supply them explicitly is that their values can be deduced
from the sorts of the explicitly given arguments.

define Conjcomm rr : Conjunction (Simplification2 rr, Simplification1 rr)

>> Conjcomm: [(.p_1:prop),(.q_1:prop),(rr_1:

>> that (.p_1 & .q_1)) => ((Simplification2(rr_1)

>> Conjunction Simplification1(rr_1)):that

>> (.q_1 & .p_1))]

>> {move 0}

14

We illustrate the construction of a derived rule. From input rr, evidence
for p ∧ q, we extract evidence for q by simplification (2) and evidence for p
by simplification (1), which we put together using conjunction into evidence
for q ∧ p. We appear to have shown the theorem that if p ∧ q, then q ∧ p,
though we do not yet have a representation of if. . .then. . ..

Notice that the hidden arguments of the conjunction and simplification
functions which we did not have to write in our instructions to Lestrade
are not shown in its description of the type of Conjcomm. Notice that the
function Conjunction is treated as an infix operator because it has two
explicit arguments.

5 The logic of implication

In this section, we introduce propositions of the form “if p then q”, in sym-
bolic form p→ q.

construct -> p q : prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare ss that p -> q

>> ss: that (p -> q) {move 1}

construct Mp pp ss : that q

>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),(ss_1:

>> that (.p_1 -> .q_1)) => (---:that .q_1)]

>> {move 0}

15

We inform the good Inspector that if we have evidence pp for p and
evidence ss for p → q, we can construct evidence for p → q. This rule
for using an assumption which is an implication is not so different from the
rules of conjunction above, except for detail (it is after all a different logical
operation). Mp abbreviates the usual Latin name modus ponens for this rule.

The next rule is quite different, revealing additional capabilities of the
Inspector.

open

declare pp1 that p

>> pp1: that p {move 2}

construct Ded pp1 : that q

>> Ded: [(pp1_1:that p) => (---:that q)]

>> {move 1}

close

construct Deduction Ded : that p -> q

>> Deduction: [(.p_1:prop),(.q_1:prop),(Ded_1:[(pp1_2:

>> that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

Here we make use of the more sophisticated machinery of function defi-
nitions to introduce a variable function Ded from evidence for p to evidence
for q and define a function Deduction which takes such a function Ded to a
proof of p→ q.

And this makes sense: if we have a way to construct a proof of q given a
proof of p, we have proved p→ q.

16

open

declare cc1 that p & q

>> cc1: that (p & q) {move 2}

define conjproof cc1 : Conjcomm cc1

>> conjproof: [(cc1_1:that (p & q)) =>

>> (Conjcomm(cc1_1):that (q & p))]

>> {move 1}

close

define Conjthm p q : Deduction conjproof

>> Conjthm: [(p_1:prop),(q_1:prop) => (Deduction([(cc1_2:

>> that (p_1 & q_1)) => (Conjcomm(cc1_2):

>> that (q_1 & p_1))])

>> :that ((p_1 & q_1) -> (q_1 & p_1)))]

>> {move 0}

Here we show how to use the Deduction construction of proofs of impli-
cations. Recall at the end of the previous section that we thought we had
proved that p ∧ q implies q ∧ p: here we show that we can in fact prove
this. Conjthm is a function which takes propositions p and q to a proof of
p ∧ q → q ∧ p.

There is a subtle point which might be useful to bring up here: notice that
conjproof really is needed. The object cc1 is evidence for p, and Conjcomm

cc1 is evidence for q, but Conjcomm is not a function taking evidence for p
to evidence for q: Conjcomm has two additional hidden arguments p, q so is
a function of three variables of a rather complex type, not a function of one

17

variable of the type needed.
It might also be a useful exercise to read the sort information of Conjthm

and identify the expanded version of conjproof.

6 An extensive proof using conjunction and

implication alone

We give an extensive proof written (more or less) in English using the same
formal rules we have implemented in Lestrade, then convert it to a definition
of a proof object in Lestrade.

Main Goal: Prove ((P ∧Q)→ R)↔ (P → (Q→ R))

This statement is a biconditional, so its proof will have two parts.

Part I:

Assume (1): ((P ∧Q)→ R)

Goal (of part I): (P → (Q→ R))

The form of the goal tells us what to do!

Assume (2): P

Goal: Q→ R
and again!

Assume (3): Q

Goal: R
Now we have “unpacked” everything...we should pause
and take stock of what we have. Line (1), ((P ∧Q)→ R),
would give us our goal R...if we had P ∧ Q. And we can
have this.

(4): P ∧Q by conjunction, lines 2,3

(5): R by modus ponens, lines 1,4 [I do not care which order
the line numbers are given in]

(6): Q→ R by deduction lines 3-5. [this is by the entire block of
lines, I do mean a hyphen not a comma]

(7): (P → (Q→ R)) by deduction lines 2-6.

This completes our work for Part I. We could state an implication
as proved here, but we do not have to. Part II is on the next page.

18

Part II:

Assume (8): (P → (Q→ R))

note that while I numbered this line 8, to avoid conflict with the
part of the proof already given, I in fact have no lines available to
me but line 8 for my argument at this point: the argument of Part
I is over, and everything in lines 1-7 depends on the assumption
in line 1 which we are no longer making here.

Goal (of part II): ((P ∧Q)→ R)

The form of the goal tells us what to do!

Assume (9): P ∧Q
Goal: R

We are now as unpacked as we can get, so we have to look
at our resources. If we had P , we could apply modus ponens
with line 8 and get Q→ R. And we can have P ...

(10): P simplification line 9

(11): Q→ R m.p. lines 9,10 (m.p. is an allowed abbreviation for
“modus ponens”.)
Since we have Q → R, it is natural to think about whether
we have Q. And we do...

(12): Q simplification line 9 [we could have unpacked this at the
same time we unpacked P above: the line order here is a little
flexible]

(13): R by m.p. lines 11,12.

(14): ((P ∧Q)→ R) by deduction lines 9-13.

This completes the argument for Part II.

(15): The Main Goal to be proved follows by biconditional introduction,
lines 1-7, 8-14.

I could say “((P∧Q)→ R)↔ (P → (Q→ R)) follows by biconditional
introduction, lines 1-7, 8-14”, but this is a situation where it is natural
(since the statement of the Main Goal is long) to refer to it by name.

The supporting Lestrade text follows.

19

define <-> p q : (p -> q) & q -> p

>> <->: [(p_1:prop),(q_1:prop) => (((p_1 ->

>> q_1) & (q_1 -> p_1)):prop)]

>> {move 0}

We define the biconditional, exactly as one would expect.

declare uu that p->q

>> uu: that (p -> q) {move 1}

declare vv that q->p

>> vv: that (q -> p) {move 1}

define fixprop p pp : pp

>> fixprop: [(p_1:prop),(pp_1:that p_1) => (pp_1:

>> that p_1)]

>> {move 0}

The function fixprop is a technical device to prevent Lestrade from giving a
definitionally equivalent but undesired form to a proposition for which we have
evidence in stored and displayed sort information. Lestrade does know that things
equivalent by application of definitions are the same.

define Biconditional uu vv : fixprop (p<->q,Conjunction uu vv)

>> Biconditional: [(.p_1:prop),(.q_1:prop),(uu_1:

>> that (.p_1 -> .q_1)),(vv_1:that (.q_1

>> -> .p_1)) => (((.p_1 <-> .q_1) fixprop

>> Conjunction((.p_1 -> .q_1),uu_1,(.q_1

>> -> .p_1),vv_1)):that (.p_1 <-> .q_1))]

20

>> {move 0}

We have defined the biconditional and given a rule generating a proof of a
biconditional from the proofs of its supporting implications.

declare r prop

>> r: prop {move 1}

declare r prop

>> r: prop {move 1}

open

declare line1 that (p & q) -> r

>> line1: that ((p & q) -> r) {move 2}

open

declare line2 that p

>> line2: that p {move 3}

open

declare line3 that q

>> line3: that q {move 4}

define line4 line3 : Conjunction line2 line3

>> line4: [(line3_1:that q) =>

>> ((line2 Conjunction line3_1):

21

>> that (p & q))]

>> {move 3}

define line5 line3 : Mp (line4 line3, line1)

>> line5: [(line3_1:that q) =>

>> ((line4(line3_1) Mp line1):

>> that r)]

>> {move 3}

close

define line6 line2 : Deduction line5

>> line6: [(line2_1:that p) => (Deduction([(line3_2:

>> that q) => (((line2_1

>> Conjunction line3_2)

>> Mp line1):that r)])

>> :that (q -> r))]

>> {move 2}

close

define line7 line1 : Deduction line6

>> line7: [(line1_1:that ((p & q) -> r))

>> => (Deduction([(line2_2:that p)

>> => (Deduction([(line3_3:that

>> q) => (((line2_2 Conjunction

>> line3_3) Mp line1_1):

>> that r)])

>> :that (q -> r))])

>> :that (p -> (q -> r)))]

>> {move 1}

close

22

define Part1 p q r: Deduction line7

>> Part1: [(p_1:prop),(q_1:prop),(r_1:prop)

>> => (Deduction([(line1_2:that ((p_1 &

>> q_1) -> r_1)) => (Deduction([(line2_3:

>> that p_1) => (Deduction([(line3_4:

>> that q_1) => (((line2_3

>> Conjunction line3_4)

>> Mp line1_2):that r_1)])

>> :that (q_1 -> r_1))])

>> :that (p_1 -> (q_1 -> r_1)))])

>> :that (((p_1 & q_1) -> r_1) -> (p_1

>> -> (q_1 -> r_1))))]

>> {move 0}

open

declare line8 that p -> (q -> r)

>> line8: that (p -> (q -> r)) {move 2}

open

declare line9 that p&q

>> line9: that (p & q) {move 3}

define line10 line9 : Simplification1 line9

>> line10: [(line9_1:that (p & q))

>> => (Simplification1(line9_1):

>> that p)]

>> {move 2}

define line11 line9 : Mp (line10 line9, line8)

23

>> line11: [(line9_1:that (p & q))

>> => ((line10(line9_1) Mp line8):

>> that (q -> r))]

>> {move 2}

define line12 line9 : Simplification2 line9

>> line12: [(line9_1:that (p & q))

>> => (Simplification2(line9_1):

>> that q)]

>> {move 2}

define line13 line9 : Mp (line12 line9, line11 line9)

>> line13: [(line9_1:that (p & q))

>> => ((line12(line9_1) Mp line11(line9_1)):

>> that r)]

>> {move 2}

close

define line14 line8 : Deduction line13

>> line14: [(line8_1:that (p -> (q -> r)))

>> => (Deduction([(line9_2:that (p

>> & q)) => ((Simplification2(line9_2)

>> Mp (Simplification1(line9_2)

>> Mp line8_1)):that r)])

>> :that ((p & q) -> r))]

>> {move 1}

close

define Part2 p q r : Deduction line14

24

>> Part2: [(p_1:prop),(q_1:prop),(r_1:prop)

>> => (Deduction([(line8_2:that (p_1 ->

>> (q_1 -> r_1))) => (Deduction([(line9_3:

>> that (p_1 & q_1)) => ((Simplification2(line9_3)

>> Mp (Simplification1(line9_3)

>> Mp line8_2)):that r_1)])

>> :that ((p_1 & q_1) -> r_1))])

>> :that ((p_1 -> (q_1 -> r_1)) -> ((p_1

>> & q_1) -> r_1)))]

>> {move 0}

define Export p q r : Biconditional (Part1 p q r,Part2 p q r)

>> Export: [(p_1:prop),(q_1:prop),(r_1:prop)

>> => ((Part1(p_1,q_1,r_1) Biconditional

>> Part2(p_1,q_1,r_1)):that (((p_1 & q_1)

>> -> r_1) <-> (p_1 -> (q_1 -> r_1))))]

>> {move 0}

The Lestrade calculation implementing the proof above is formally very
close to the paper version in structure. This is emphasized here by giving
names to declared items corresponding exactly to the lines and parts in the
proof above. What is present in the paper proof and absent in the Lestrade
proof is the statement of goals: and this could be supplied by suitably com-
menting the Lestrade text, which one would very likely do if developing the
proof incrementally in a Lestrade session.

Notice that the Lestrade device of moves neatly implements what happens
to the structure of an argument when one introduces a hypothesis for the
sake of argument.

25

7 The logic of negation, contrapositives, and

disjunction

In this section we introduce the sentence construction “It is not the case
that p”, symbolically ¬p. It is useful to introduce a primitive false state-
ment, which Lestrade calls ??, but which we will typeset as ⊥, familiarly
known as “the absurd”. We continue with exploration of the interaction of
implication and negation, and define the last major logical operation of dis-
junction (and/or) in terms of implication and negation, and develop its basic
rules.

construct ?? prop

>> ??: prop {move 0}

define ~ p : p -> ??

>> ~: [(p_1:prop) => ((p_1 -> ??):prop)]

>> {move 0}

We declare the absurd and use it to define ¬p as p→⊥.

declare maybe that ~ ~ p

>> maybe: that ~(~(p)) {move 1}

construct Dneg maybe that p

>> Dneg: [(.p_1:prop),(maybe_1:that ~(~(.p_1))) => (---:

>> that .p_1)]

>> {move 0}

26

We introduce the rule of double negation, by declaring a primitive func-
tion sending evidence for ¬¬p to evidence for p.

open

declare pp1 that p

>> pp1: that p {move 2}

construct Negded pp1 that ??

>> Negded: [(pp1_1:that p) => (---:that

>> ??)]

>> {move 1}

close

define Negproof Negded : fixprop (~p,Deduction Negded)

>> Negproof: [(.p_1:prop),(Negded_1:[(pp1_2:

>> that .p_1) => (---:that ??)])

>> => ((~(.p_1) fixprop Deduction(Negded_1)):

>> that ~(.p_1))]

>> {move 0}

Here we develop the standard strategy for proving a negative statement
¬p: if we have a function taking proofs of p to proofs of ⊥, we can get a proof
of ¬p. The function fixprop is used here to tell Lestrade that the output
of Negproof is to be recorded as evidence for ¬p rather than evidence for
p →⊥ (at bottom Lestrade does recognize that these are the same thing).
The Lestrade type checker does recognize terms as being the same which are
equivalent by definition in a suitable sense.

It is also worth noting here that Lestrade views every two argument func-
tion whose first argument is not a function as an infix operator by default.

27

fixprop is thus rather surprisingly used as an infix. Of course we have
been seeing this all along with the binary propositional operators, and with
operations like addition and multiplication on natural numbers.

define v p q : ~p -> q

>> v: [(p_1:prop),(q_1:prop) => ((~(p_1) -> q_1):prop)]

>> {move 0}

We define disjunction in terms of implication and negation.

declare indev that ~q -> ~p

>> indev: that (~(q) -> ~(p)) {move 1}

open

declare pp1 that p

>> pp1: that p {move 2}

open

declare notq that ~q

>> notq: that ~(q) {move 3}

define line1 notq : Mp notq indev

>> line1: [(notq_1:that ~(q)) => ((notq_1

>> Mp indev):that ~(p))]

>> {move 2}

28

define line2 notq : Mp (pp1, line1 notq)

>> line2: [(notq_1:that ~(q)) => ((pp1

>> Mp line1(notq_1)):that ??)]

>> {move 2}

close

define qq1 pp1 : Negproof line2

>> qq1: [(pp1_1:that p) => (Negproof([(notq_2:

>> that ~(q)) => ((pp1_1 Mp (notq_2

>> Mp indev)):that ??)])

>> :that ~(~(q)))]

>> {move 1}

define qq2 pp1: Dneg qq1 pp1

>> qq2: [(pp1_1:that p) => (Dneg(qq1(pp1_1)):

>> that q)]

>> {move 1}

close

define Contrapositive indev : Deduction qq2

>> Contrapositive: [(.q_1:prop),(.p_1:prop),

>> (indev_1:that (~(.q_1) -> ~(.p_1)))

>> => (Deduction([(pp1_2:that .p_1) =>

>> (Dneg(Negproof([(notq_3:that ~(.q_1))

>> => ((pp1_2 Mp (notq_3 Mp indev_1)):

>> that ??)]))

>> :that .q_1)])

>> :that (.p_1 -> .q_1))]

29

>> {move 0}

>> {move 0}

We develop a function Contrapositive which given a proof of ¬q → ¬p
(as its only explicit argument) returns a proof of p→ q.

Reversing the order of development of the last large text proof, we develop
a text proof of the rule “from ¬Q→ ¬P deduce P → Q” from the Lestrade
text above.

Assume (indev): ¬Q→ ¬P

Goal: P → Q

Assume (pp1): P

Goal: Q

Assume (notq): ¬Q
Goal: ⊥
line 1: ¬P modus ponens (indev, pp1)

line 2: ⊥ contradiction (pp1, line 1)

qq1: ¬¬Q negation introduction(notq–line 2)

qq2: Q double negation (qq1)

contrapositive: P → Q deduction (pp1–qq2)

open

declare notp that ~p

>> notp: that ~(p) {move 2}

construct excalt1 notp that q

30

>> excalt1: [(notp_1:that ~(p)) => (---:

>> that q)]

>> {move 1}

close

define Orproof1 excalt1 : fixprop (p v q,Deduction excalt1)

>> Orproof1: [(.p_1:prop),(.q_1:prop),(excalt1_1:

>> [(notp_2:that ~(.p_1)) => (---:that

>> .q_1)])

>> => (((.p_1 v .q_1) fixprop Deduction(excalt1_1)):

>> that (.p_1 v .q_1))]

>> {move 0}

We develop our basic rule of disjunction introduction: if we can deduce
q from ¬p, we get p ∨ q. Of course, there should be a symmetric rule, since
disjunction is commutative: to derive it we will need the converse double
negation rule and an application of Contrapositive.

open

declare notp that ~p

>> notp: that ~(p) {move 2}

define dneg2 notp : Mp pp notp

>> dneg2: [(notp_1:that ~(p)) => ((pp Mp

>> notp_1):that ??)]

>> {move 1}

close

31

define Dneg2 pp : fixprop (~ ~p,Deduction dneg2)

>> Dneg2: [(.p_1:prop),(pp_1:that .p_1) => ((~(~(.p_1))

>> fixprop Deduction([(notp_2:that ~(.p_1))

>> => ((pp_1 Mp notp_2):that ??)]))

>> :that ~(~(.p_1)))]

>> {move 0}

We develop the function Dneg2 which takes a proof of p to a proof of ¬¬p.

open

declare notq that ~q

>> notq: that ~(q) {move 2}

construct excalt2 notq that p

>> excalt2: [(notq_1:that ~(q)) => (---:

>> that p)]

>> {move 1}

define line1 notq : Dneg2 excalt2 notq

>> line1: [(notq_1:that ~(q)) => (Dneg2(excalt2(notq_1)):

>> that ~(~(p)))]

>> {move 1}

close

define Orproof2 excalt2: fixprop(p v q,Contrapositive (Deduction line1))

32

>> Orproof2: [(.q_1:prop),(.p_1:prop),(excalt2_1:

>> [(notq_2:that ~(.q_1)) => (---:that

>> .p_1)])

>> => (((.p_1 v .q_1) fixprop Contrapositive(Deduction([(notq_3:

>> that ~(.q_1)) => (Dneg2(excalt2_1(notq_3)):

>> that ~(~(.p_1)))]))

>>):that (.p_1 v .q_1))]

>> {move 0}

and we develop the symmetrical disjunction introduction rule.

open

declare notq that ~q

>> notq: that ~(q) {move 2}

define ppconst notq : pp

>> ppconst: [(notq_1:that ~(q)) => (pp:

>> that p)]

>> {move 1}

close

define Addition1 q pp : Orproof2 ppconst

>> Addition1: [(q_1:prop),(.p_1:prop),(pp_1:

>> that .p_1) => (Orproof2([(notq_2:that

>> ~(q_1)) => (pp_1:that .p_1)])

>> :that (.p_1 v q_1))]

>> {move 0}

33

open

declare notp that ~p

>> notp: that ~(p) {move 2}

define qqconst notp : qq

>> qqconst: [(notp_1:that ~(p)) => (qq:

>> that q)]

>> {move 1}

close

define Addition2 p qq : Orproof1 qqconst

>> Addition2: [(p_1:prop),(.q_1:prop),(qq_1:

>> that .q_1) => (Orproof1([(notp_2:that

>> ~(p_1)) => (qq_1:that .q_1)])

>> :that (p_1 v .q_1))]

>> {move 0}

We present the rules of addition (the constructive disjunction introduction
rules).

open

declare notq that ~q

>> notq: that ~(q) {move 2}

34

open

declare pp1 that p

>> pp1: that p {move 3}

define line3 pp1 : Mp pp1 ss

>> line3: [(pp1_1:that p) => ((pp1_1

>> Mp ss):that q)]

>> {move 2}

define line4 pp1 : Mp (line3 pp1,notq)

>> line4: [(pp1_1:that p) => ((line3(pp1_1)

>> Mp notq):that ??)]

>> {move 2}

close

define pcantbe notq : Negproof line4

>> pcantbe: [(notq_1:that ~(q)) => (Negproof([(pp1_2:

>> that p) => (((pp1_2 Mp ss)

>> Mp notq_1):that ??)])

>> :that ~(p))]

>> {move 1}

close

define Contrapositive2 ss : Deduction pcantbe

35

>> Contrapositive2: [(.p_1:prop),(.q_1:prop),

>> (ss_1:that (.p_1 -> .q_1)) => (Deduction([(notq_2:

>> that ~(.q_1)) => (Negproof([(pp1_3:

>> that .p_1) => (((pp1_3 Mp

>> ss_1) Mp notq_2):that ??)])

>> :that ~(.p_1))])

>> :that (~(.q_1) -> ~(.p_1)))]

>> {move 0}

We present the converse contrapositive rule, taking evidence for p→ q to
evidence for ¬q → ¬p. We suggest that the Reader write her own text proof
of the rule “from P → Q, deduce ¬Q→ ¬P” from the Lestrade text above,
using our development for the other contrapositive rule as a model.

declare ss2 that q -> r

>> ss2: that (q -> r) {move 1}

open

declare pp1 that p

>> pp1: that p {move 2}

define line5 pp1 : Mp pp1 ss

>> line5: [(pp1_1:that p) => ((pp1_1 Mp

>> ss):that q)]

>> {move 1}

define line6 pp1 : Mp (line5 pp1,ss2)

36

>> line6: [(pp1_1:that p) => ((line5(pp1_1)

>> Mp ss2):that r)]

>> {move 1}

close

define Transimp ss ss2: Deduction line6

>> Transimp: [(.p_1:prop),(.q_1:prop),(ss_1:

>> that (.p_1 -> .q_1)),(.r_1:prop),(ss2_1:

>> that (.q_1 -> .r_1)) => (Deduction([(pp1_2:

>> that .p_1) => (((pp1_2 Mp ss_1)

>> Mp ss2_1):that .r_1)])

>> :that (.p_1 -> .r_1))]

>> {move 0}

We present the rule for transitivity of implication: given evidence for
p→ q and q → r, get evidence for p→ r.

declare alts that p v q

>> alts: that (p v q) {move 1}

declare case1 that p -> r

>> case1: that (p -> r) {move 1}

declare case2 that q -> r

>> case2: that (q -> r) {move 1}

37

open

declare notr that ~r

>> notr: that ~(r) {move 2}

define linea7 : Contrapositive2 case1

>> linea7: [(Contrapositive2(case1):that

>> (~(r) -> ~(p)))]

>> {move 1}

define line8 notr : Mp notr linea7

>> line8: [(notr_1:that ~(r)) => ((notr_1

>> Mp linea7):that ~(p))]

>> {move 1}

define line9 notr : Mp (line8 notr, alts)

>> line9: [(notr_1:that ~(r)) => ((line8(notr_1)

>> Mp alts):that q)]

>> {move 1}

define line10 notr : Mp (line9 notr, case2)

>> line10: [(notr_1:that ~(r)) => ((line9(notr_1)

>> Mp case2):that r)]

>> {move 1}

define line11 notr : Mp (line10 notr, notr)

38

>> line11: [(notr_1:that ~(r)) => ((line10(notr_1)

>> Mp notr_1):that ??)]

>> {move 1}

close

define Cases alts case1 case2 : Dneg (Negproof line11)

>> Cases: [(.p_1:prop),(.q_1:prop),(alts_1:that

>> (.p_1 v .q_1)),(.r_1:prop),(case1_1:

>> that (.p_1 -> .r_1)),(case2_1:that (.q_1

>> -> .r_1)) => (Dneg(Negproof([(notr_2:

>> that ~(.r_1)) => (((((notr_2 Mp

>> Contrapositive2(case1_1)) Mp alts_1)

>> Mp case2_1) Mp notr_2):that ??)]))

>> :that .r_1)]

>> {move 0}

We derive the rule of proof by cases: if we have evidence for p ∨ q, ev-
idence for p → r and evidence for q → r, we get evidence for r. This is
the constructive rule of disjunction elimination (even though we proved it
classically).

declare ppx that ~p

>> ppx: that ~(p) {move 1}

define Ds1 alts ppx : Mp ppx alts

>> Ds1: [(.p_1:prop),(.q_1:prop),(alts_1:that

>> (.p_1 v .q_1)),(ppx_1:that ~(.p_1))

39

>> => ((ppx_1 Mp alts_1):that .q_1)]

>> {move 0}

declare qqx that ~q

>> qqx: that ~(q) {move 1}

define Ds2 alts qqx : Dneg (Mp (qqx,Contrapositive2 alts))

>> Ds2: [(.p_1:prop),(.q_1:prop),(alts_1:that

>> (.p_1 v .q_1)),(qqx_1:that ~(.q_1))

>> => (Dneg((qqx_1 Mp Contrapositive2(alts_1))):

>> that .p_1)]

>> {move 0}

We develop the rules of disjunctive syllogism, additional classical disjunc-
tion elimination rules. That is enough propositional logic to illustrate that
we have enough power to prove what we need to in propositional logic, and
to give an indication of how we go about it.

All of the rules above are good bases for text proof writing exercises.

40

8 Equality

We need some atomic statements to link with our propositional connectives.
We’ll start with equations.

declare tau type

>> tau: type {move 1}

declare x in tau

>> x: in tau {move 1}

declare y in tau

>> y: in tau {move 1}

construct = x y : prop

>> =: [(.tau_1:type),(x_1:in .tau_1),(y_1:in .tau_1) =>

>> (---:prop)]

>> {move 0}

We declare the equality relation. Note that it has a hidden third param-
eter, the type of the objects asserted to be equal.

construct Refleq x that x=x

>> Refleq: [(.tau_1:type),(x_1:in .tau_1) =>

>> (---:that (x_1 = x_1))]

>> {move 0}

41

This is the first of the two axiomatic properties of equality: everything
of whatever type is equal to itself.

open

declare x1 in tau

>> x1: in tau {move 2}

construct Pred x1 : prop

>> Pred: [(x1_1:in tau) => (---:prop)]

>> {move 1}

close

declare eqev that x=y

>> eqev: that (x = y) {move 1}

declare subsev that Pred x

>> subsev: that Pred(x) {move 1}

construct Substitution Pred, eqev subsev : that Pred y

>> Substitution: [(.tau_1:type),(Pred_1:[(x1_2:

>> in .tau_1) => (---:prop)]),

>> (.x_1:in .tau_1),(.y_1:in .tau_1),(eqev_1:

>> that (.x_1 = .y_1)),(subsev_1:that Pred_1(.x_1))

>> => (---:that Pred_1(.y_1))]

>> {move 0}

42

This is the rule of substitution of equals for equals: if P (x) is true and
x = y then P (y) is true.

Commas between arguments in Lestrade parameter lists are usually op-
tional, but after a function which appears as an argument (and before it if it
has two or more arguments and the first is not a function) we may need to
place a comma so that it is not misinterpreted as a function applied in either
prefix or infix/mixfix position.

open

declare y1 in tau

>> y1: in tau {move 2}

define sympred y1 : y1 = x

>> sympred: [(y1_1:in tau) => ((y1_1 =

>> x):prop)]

>> {move 1}

close

define Symmeq eqev:Substitution(sympred,eqev,Refleq x)

>> Symmeq: [(.tau_1:type),(.x_1:in .tau_1),(.y_1:

>> in .tau_1),(eqev_1:that (.x_1 = .y_1))

>> => (Substitution([(y1_2:in .tau_1) =>

>> ((y1_2 = .x_1):prop)]

>> ,eqev_1,Refleq(.x_1)):that (.y_1 = .x_1))]

>> {move 0}

43

Here is the proof of the symmetry rule for equality: from evidence for
x = y get evidence for y = x (by substitution for the leftmost occurrence of
x in the tautology x = x)

Here is a text proof of the symmetry property.

Assume (1): x = y

Goal: y = x

Define (2) P (z) as z = x.

(3): x = x reflexivity of equality.

(4): P (x) by 2,3

(5): P (y) by substitution using (1) into (4)

(6): y = x by (5), (2)

declare z in tau

>> z: in tau {move 1}

declare eqev2 that y=z

>> eqev2: that (y = z) {move 1}

open

declare x1 in tau

>> x1: in tau {move 2}

define transpred x1 : x1 = z

>> transpred: [(x1_1:in tau) => ((x1_1

44

>> = z):prop)]

>> {move 1}

close

define Transeq eqev eqev2 : Substitution(transpred,Symmeq eqev,eqev2)

>> Transeq: [(.tau_1:type),(.x_1:in .tau_1),

>> (.y_1:in .tau_1),(eqev_1:that (.x_1

>> = .y_1)),(.z_1:in .tau_1),(eqev2_1:that

>> (.y_1 = .z_1)) => (Substitution([(x1_2:

>> in .tau_1) => ((x1_2 = .z_1):prop)]

>> ,Symmeq(eqev_1),eqev2_1):that (.x_1

>> = .z_1))]

>> {move 0}

Here is a proof of the transitive property of equality.
We recommend as an exercise writing your own text proof of this theorem

using the text proof of symmetry of equality above as a model.

9 The logic of quantifiers

In this section we introduce the universal and existential quantifiers.

construct Forall Pred : prop

>> Forall: [(.tau_1:type),(Pred_1:[(x1_2:in

>> .tau_1) => (---:prop)])

>> => (---:prop)]

>> {move 0}

We define the universal quantifier as an operation on functions from type
tau to propositions (i.e, predicates of type tau objects).

45

open

declare x1 in tau

>> x1: in tau {move 2}

define Notpred x1 : ~ Pred x1

>> Notpred: [(x1_1:in tau) => (~(Pred(x1_1)):

>> prop)]

>> {move 1}

close

define Exists Pred: ~ Forall Notpred

>> Exists: [(.tau_1:type),(Pred_1:[(x1_2:in

>> .tau_1) => (---:prop)])

>> => (~(Forall([(x1_3:in .tau_1) => (~(Pred_1(x1_3)):

>> prop)]))

>> :prop)]

>> {move 0}

We define the existential quantifier (∃x : P (x)) as ¬(∀x : ¬P (x)}. Notice
that we have to assign a name to (x→ ¬P (x)) [¬P (x) as a predicate of x].

declare univev that Forall Pred

>> univev: that Forall(Pred) {move 1}

declare u in tau

46

>> u: in tau {move 1}

construct Ui univev, u : that Pred u

>> Ui: [(.tau_1:type),(.Pred_1:[(x1_2:in .tau_1)

>> => (---:prop)]),

>> (univev_1:that Forall(.Pred_1)),(u_1:

>> in .tau_1) => (---:that .Pred_1(u_1))]

>> {move 0}

We introduce the rule of universal instantiation. From (∀x ∈ τ : P (x))
deduce P (a) for any specific a ∈ τ .4

open

open

declare x1 in tau

>> x1: in tau {move 2}

construct univ x1 that Pred x1

>> univ: [(x1_1:in tau) => (---:that Pred(x1_1))]

>> {move 1}

close

construct Ug univ : that Forall Pred

>> Ug: [(.tau_1:type),(.Pred_1:[(x1_2:in .tau_1)

>> => (---:prop)]),

4The use of ∈ here is admittedly an abuse of notation. Types are not sets.

47

>> (univ_1:[(x1_3:in .tau_1) => (---:that

>> .Pred_1(x1_3))])

>> => (---:that Forall(.Pred_1))]

>> {move 0}

We introduce the rule of universal generalization. If I have a general
method to prove P (a) for any a ∈ τ (a function taking a in type tau to a
proof of P (a), I postulate a proof for (∀x ∈ τ : P (x)).

open

declare x1 in tau

>> x1: in tau {move 2}

define selfproof x1 : Refleq x1

>> selfproof: [(x1_1:in tau) => (Refleq(x1_1):

>> that (x1_1 = x1_1))]

>> {move 1}

close

define Univexample tau: Ug selfproof

>> Univexample: [(tau_1:type) => (Ug([(x1_3:

>> in tau_1) => (Refleq(x1_3):that

>> (x1_3 = x1_3))])

>> :that Forall([(x1_4:in tau_1) => ((x1_4

>> = x1_4):prop)]))

>>]

>> {move 0}

48

We give an example, proving (∀x ∈ τ : x = x). It is useful to notice here
that Lestrade can deduce the hidden predicate argument here (the predicate
(x 7→ x = x) which we have not even named).

declare xx in tau

>> xx: in tau {move 1}

declare predev that Pred xx

>> predev: that Pred(xx) {move 1}

open

declare line15 that Forall Notpred

>> line15: that Forall(Notpred) {move 2}

define line16 line15 : Ui line15,xx

>> line16: [(line15_1:that Forall(Notpred))

>> => ((line15_1 Ui xx):that Notpred(xx))]

>> {move 1}

define line17 line15 : Mp predev, line16 line15

>> line17: [(line15_1:that Forall(Notpred))

>> => ((predev Mp line16(line15_1)):

>> that ??)]

>> {move 1}

close

49

define Ei Pred, predev : fixprop (Exists Pred,Negproof line17)

>> Ei: [(.tau_1:type),(Pred_1:[(x1_2:in .tau_1)

>> => (---:prop)]),

>> (.xx_1:in .tau_1),(predev_1:that Pred_1(.xx_1))

>> => ((Exists(Pred_1) fixprop Negproof([(line15_4:

>> that Forall([(x1_5:in .tau_1) =>

>> (~(Pred_1(x1_5)):prop)]))

>> => ((predev_1 Mp (line15_4 Ui .xx_1)):

>> that ??)]))

>> :that Exists(Pred_1))]

>> {move 0}

We develop the rule of existential instantiation. Given an xx of type τ
and evidence that Pred(xx), we can conclude (∃x ∈ τ : Pred(x)). The
argument xx is implicit.

declare existsev that Exists Pred

>> existsev: that Exists(Pred) {move 1}

declare wgoal prop

>> wgoal: prop {move 1}

open

declare w1 in tau

>> w1: in tau {move 2}

50

declare exev that Pred w1

>> exev: that Pred(w1) {move 2}

construct wproof exev that wgoal

>> wproof: [(.w1_1:in tau),(exev_1:that

>> Pred(.w1_1)) => (---:that wgoal)]

>> {move 1}

declare notwgoal that ~ wgoal

>> notwgoal: that ~(wgoal) {move 2}

open

declare w2 in tau

>> w2: in tau {move 3}

open

declare exev2 that Pred w2

>> exev2: that Pred(w2) {move

>> 4}

define line25 exev2 : wproof exev2

>> line25: [(exev2_1:that Pred(w2))

>> => (wproof(exev2_1):that

>> wgoal)]

51

>> {move 3}

define line26 exev2 : Mp (line25 exev2, notwgoal)

>> line26: [(exev2_1:that Pred(w2))

>> => ((line25(exev2_1)

>> Mp notwgoal):that ??)]

>> {move 3}

close

define line27 w2 : Negproof line26

>> line27: [(w2_1:in tau) => (Negproof([(exev2_2:

>> that Pred(w2_1)) => ((wproof(exev2_2)

>> Mp notwgoal):that ??)])

>> :that ~(Pred(w2_1)))]

>> {move 2}

close

define line28 notwgoal : Ug line27

>> line28: [(notwgoal_1:that ~(wgoal))

>> => (Ug([(w2_3:in tau) => (Negproof([(exev2_4:

>> that Pred(w2_3)) => ((wproof(exev2_4)

>> Mp notwgoal_1):that ??)])

>> :that ~(Pred(w2_3)))])

>> :that Forall([(w2_5:in tau) =>

>> (~(Pred(w2_5)):prop)]))

>>]

>> {move 1}

define line29 notwgoal : Mp (line28 notwgoal,existsev)

52

>> line29: [(notwgoal_1:that ~(wgoal))

>> => ((line28(notwgoal_1) Mp existsev):

>> that ??)]

>> {move 1}

close

define Witness existsev wproof : Dneg(Negproof line29)

>> Witness: [(.tau_1:type),(.Pred_1:[(x1_2:in

>> .tau_1) => (---:prop)]),

>> (existsev_1:that Exists(.Pred_1)),(.wgoal_1:

>> prop),(wproof_1:[(.w1_3:in .tau_1),(exev_3:

>> that .Pred_1(.w1_3)) => (---:that

>> .wgoal_1)])

>> => (Dneg(Negproof([(notwgoal_4:that

>> ~(.wgoal_1)) => ((Ug([(w2_7:in

>> .tau_1) => (Negproof([(exev2_8:

>> that .Pred_1(w2_7)) =>

>> (((w2_7 wproof_1 exev2_8)

>> Mp notwgoal_4):that ??)])

>> :that ~(.Pred_1(w2_7)))])

>> Mp existsev_1):that ??)]))

>> :that .wgoal_1)]

>> {move 0}

We develop the witness introduction rule. If we can show that introduc-
tion of a witness w and evidence that Pred(w) will yield a proof of wgoal
via application of a suitable function wproof, then from evidence existsev

that (∃x : Pred(x)) and the function wproof (in which the goal wgoal is
implicit) we get a proof of wgoal. In other words, a hypothesis that there
is a witness to an existential statement may be introduced as soon as the
existential statement is postulated to be true.

53

open

declare w1 in tau

>> w1: in tau {move 2}

define Testpred w1 : (Pred w1) & Pred w1

>> Testpred: [(w1_1:in tau) => ((Pred(w1_1)

>> & Pred(w1_1)):prop)]

>> {move 1}

declare exev that Pred w1

>> exev: that Pred(w1) {move 2}

define test exev: Conjunction exev exev

>> test: [(.w1_1:in tau),(exev_1:that Pred(.w1_1))

>> => ((exev_1 Conjunction exev_1):

>> that (Pred(.w1_1) & Pred(.w1_1)))]

>> {move 1}

define zorch exev : Ei (Testpred, test exev)

>> zorch: [(.w1_1:in tau),(exev_1:that

>> Pred(.w1_1)) => (Ei(Testpred,test(exev_1)):

>> that Exists(Testpred))]

>> {move 1}

close

54

define Witnesstest existsev : Witness(existsev,zorch)

>> Witnesstest: [(.tau_1:type),(.Pred_1:[(x1_2:

>> in .tau_1) => (---:prop)]),

>> (existsev_1:that Exists(.Pred_1)) =>

>> ((existsev_1 Witness [(.w1_4:in .tau_1),

>> (exev_4:that .Pred_1(.w1_4)) =>

>> (Ei([(w1_5:in .tau_1) => ((.Pred_1(w1_5)

>> & .Pred_1(w1_5)):prop)]

>> ,(exev_4 Conjunction exev_4)):that

>> Exists([(w1_6:in .tau_1) => ((.Pred_1(w1_6)

>> & .Pred_1(w1_6)):prop)]))

>>])

>> :that Exists([(w1_7:in .tau_1) => ((.Pred_1(w1_7)

>> & .Pred_1(w1_7)):prop)]))

>>]

>> {move 0}

We give a simple example of use of the existential rules. We show that if
(∃x : P (x)), then (∃x : P (x) ∧ P (x)).

10 More about the natural numbers: induc-

tion and recursion principles

open

declare n1 in Nat

>> n1: in Nat {move 2}

construct Predn n1 : prop

>> Predn: [(n1_1:in Nat) => (---:prop)]

55

>> {move 1}

close

open

declare n1 in Nat

>> n1: in Nat {move 2}

declare indhyp that Predn n1

>> indhyp: that Predn(n1) {move 2}

construct indstep indhyp that Predn Succ n1

>> indstep: [(.n1_1:in Nat),(indhyp_1:that

>> Predn(.n1_1)) => (---:that Predn(Succ(.n1_1)))]

>> {move 1}

close

declare basis that Predn 1

>> basis: that Predn(1) {move 1}

declare k in Nat

>> k: in Nat {move 1}

construct Induction indstep, basis, k : that Predn k

56

>> Induction: [(.Predn_1:[(n1_2:in Nat) => (---:

>> prop)]),

>> (indstep_1:[(.n1_3:in Nat),(indhyp_3:

>> that .Predn_1(.n1_3)) => (---:that

>> .Predn_1(Succ(.n1_3)))]),

>> (basis_1:that .Predn_1(1)),(k_1:in Nat)

>> => (---:that .Predn_1(k_1))]

>> {move 0}

We begin by building the familiar principle of mathematical induction.
The function Induction takes as arguments a function taking proofs of
Pred(k) for arbitrary k to proofs of Pred(k + 1) and a proof of Pred(1)
and a natural number K and returns a proof of Pred(K). This is quite
deliberately phrased in a way which doesn’t involve any quantifiers, but a
version with the usual quantifiers could easily be derived. 5

open

declare n1 in Nat

>> n1: in Nat {move 2}

construct typefun n1 : type

>> typefun: [(n1_1:in Nat) => (---:type)]

>> {move 1}

close

open

5The induction step is given as an argument before the basis step for a technical reason:
Lestrade can deduce the implicit argument Pred from the induction step term but not from
the basis step term.

57

declare n1 in Nat

>> n1: in Nat {move 2}

declare m1 in typefun n1

>> m1: in typefun(n1) {move 2}

construct repeatfun n1 m1 in typefun Succ n1

>> repeatfun: [(n1_1:in Nat),(m1_1:in typefun(n1_1))

>> => (---:in typefun(Succ(n1_1)))]

>> {move 1}

close

declare initval in typefun 1

>> initval: in typefun(1) {move 1}

declare K in Nat

>> K: in Nat {move 1}

construct Iter repeatfun, initval, K : in typefun K

>> Iter: [(.typefun_1:[(n1_2:in Nat) => (---:

>> type)]),

>> (repeatfun_1:[(n1_3:in Nat),(m1_3:in

>> .typefun_1(n1_3)) => (---:in .typefun_1(Succ(n1_3)))]),

>> (initval_1:in .typefun_1(1)),(K_1:in

>> Nat) => (---:in .typefun_1(K_1))]

58

>> {move 0}

construct Iterinit repeatfun, initval :

that (Iter repeatfun, initval, 1) = initval

>> Iterinit: [(.typefun_1:[(n1_2:in Nat) =>

>> (---:type)]),

>> (repeatfun_1:[(n1_3:in Nat),(m1_3:in

>> .typefun_1(n1_3)) => (---:in .typefun_1(Succ(n1_3)))]),

>> (initval_1:in .typefun_1(1)) => (---:

>> that (Iter(repeatfun_1,initval_1,1)

>> = initval_1))]

>> {move 0}

construct Iternext repeatfun, initval, K :

that (Iter repeatfun, initval, Succ K)

= repeatfun K (Iter repeatfun, initval K)

>> Iternext: [(.typefun_1:[(n1_2:in Nat) =>

>> (---:type)]),

>> (repeatfun_1:[(n1_3:in Nat),(m1_3:in

>> .typefun_1(n1_3)) => (---:in .typefun_1(Succ(n1_3)))]),

>> (initval_1:in .typefun_1(1)),(K_1:in

>> Nat) => (---:that (Iter(repeatfun_1,

>> initval_1,Succ(K_1)) = (K_1 repeatfun_1

>> Iter(repeatfun_1,initval_1,K_1))))]

>> {move 0}

In this block, we develop the ability to define functions by recursion (as
a primitive, though with some additional postulates it could be derived from
induction). The function Iter is precisely analogous to Induction in its
form, replacing prop with type and that with in. The functions Iterinit

and Iternext give more precise information about the function that is de-
fined.

59

In the simple case where typefun(n) is a constant type tau and repeatfun

ignores its initial natural number argument, repeatfun can be thought of as
a function from type tau to type tau and Iter(repeatfun,iterval,n) will
be the result of applying repeatfun n − 1 times to initval (so it sends 1
to initval). The apparently odd definition of iteration is a consequence of
starting the natural numbers at 1 instead of 0, which we believe has certain
advantages in the construction of the larger number systems.

We will use Iter to define addition and multiplication of natural numbers
shortly.

It can be noted that we are giving priority to the use of natural numbers
to measure how many times an action is performed rather than the use of
natural numbers to measure the sizes of sets (which we will also soon define).
This is natural in a theory whose basic primitive concept is function rather
than set.

define oneisone : Refleq 1

>> oneisone: [(Refleq(1):that (1 = 1))]

>> {move 0}

open

declare n1 in Nat

>> n1: in Nat {move 2}

open

declare m1 in Nat

>> m1: in Nat {move 3}

define ispred m1: n1 = Succ m1

60

>> ispred: [(m1_1:in Nat) => ((n1

>> = Succ(m1_1)):prop)]

>> {move 2}

close

define Haspred n1: Exists ispred

>> Haspred: [(n1_1:in Nat) => (Exists([(m1_2:

>> in Nat) => ((n1_1 = Succ(m1_2)):

>> prop)])

>> :prop)]

>> {move 1}

close

define basisexample : Addition1 (Haspred 1, oneisone)

>> basisexample: [((Exists([(m1_1:in Nat) =>

>> ((1 = Succ(m1_1)):prop)])

>> Addition1 oneisone):that ((1 = 1) v

>> Exists([(m1_2:in Nat) => ((1 = Succ(m1_2)):

>> prop)]))

>>)]

>> {move 0}

open

declare n1 in Nat

>> n1: in Nat {move 2}

declare indhypexample that (n1 = 1) v (Haspred n1)

61

>> indhypexample: that ((n1 = 1) v Haspred(n1))

>> {move 2}

define line37 n1: Refleq Succ n1

>> line37: [(n1_1:in Nat) => (Refleq(Succ(n1_1)):

>> that (Succ(n1_1) = Succ(n1_1)))]

>> {move 1}

open

declare m1 in Nat

>> m1: in Nat {move 3}

define ispred2 m1 : Succ n1 = Succ m1

>> ispred2: [(m1_1:in Nat) => ((Succ(n1)

>> = Succ(m1_1)):prop)]

>> {move 2}

close

define line38 n1: fixprop(Haspred Succ n1,Ei ispred2, line37 n1)

>> line38: [(n1_1:in Nat) => ((Haspred(Succ(n1_1))

>> fixprop Ei([(m1_2:in Nat) => ((Succ(n1_1)

>> = Succ(m1_2)):prop)]

>> ,line37(n1_1))):that Haspred(Succ(n1_1)))]

>> {move 1}

define line39 indhypexample: Addition2(Succ n1 = 1,line38 n1)

62

>> line39: [(.n1_1:in Nat),(indhypexample_1:

>> that ((.n1_1 = 1) v Haspred(.n1_1)))

>> => (((Succ(.n1_1) = 1) Addition2

>> line38(.n1_1)):that ((Succ(.n1_1)

>> = 1) v Haspred(Succ(.n1_1))))]

>> {move 1}

close

define Inductionexample K:Induction line39, basisexample K

>> Inductionexample: [(K_1:in Nat) => (Induction([(.n1_4:

>> in Nat),(indhypexample_4:that ((.n1_4

>> = 1) v Exists([(m1_5:in Nat) =>

>> ((.n1_4 = Succ(m1_5)):prop)]))

>>) => (((Succ(.n1_4) = 1) Addition2

>> (Exists([(m1_7:in Nat) => ((Succ(.n1_4)

>> = Succ(m1_7)):prop)])

>> fixprop Ei([(m1_8:in Nat) => ((Succ(.n1_4)

>> = Succ(m1_8)):prop)]

>> ,Refleq(Succ(.n1_4))))):that ((Succ(.n1_4)

>> = 1) v Exists([(m1_9:in Nat) =>

>> ((Succ(.n1_4) = Succ(m1_9)):

>> prop)]))

>>)]

>> ,basisexample,K_1):that ((K_1 = 1) v

>> Exists([(m1_10:in Nat) => ((K_1 = Succ(m1_10)):

>> prop)]))

>>)]

>> {move 0}

We give the unique induction proof which doesn’t actually use its induc-
tion hypothesis (if you review the structure of the proof, you can see this),
the proof that each natural number is either 1 or a successor.

63

10.1 Operations of arithmetic

In this subsection we define the operations of addition and multiplication of
natural numbers.

open

declare n1 in Nat

>> n1: in Nat {move 2}

declare t1 in tau

>> t1: in tau {move 2}

construct f1 t1 : in tau

>> f1: [(t1_1:in tau) => (---:in tau)]

>> {move 1}

define f2 n1 t1 : f1 t1

>> f2: [(n1_1:in Nat),(t1_1:in tau) =>

>> (f1(t1_1):in tau)]

>> {move 1}

close

declare tinit in tau

>> tinit: in tau {move 1}

declare nt in Nat

64

>> nt: in Nat {move 1}

define iter f1, tinit nt : Iter f2, tinit Succ nt

>> iter: [(.tau_1:type),(f1_1:[(t1_2:in .tau_1)

>> => (---:in .tau_1)]),

>> (tinit_1:in .tau_1),(nt_1:in Nat) =>

>> (Iter([(n1_4:in Nat),(t1_4:in .tau_1)

>> => (f1_1(t1_4):in .tau_1)]

>> ,tinit_1,Succ(nt_1)):in .tau_1)]

>> {move 0}

If f is a function from type τ to type τ , iter f x n will represent fn(x),
the result of applying the function f to x n times. Notice that Iter is applied
to Succ n in the definition of iter.

define ++ n m : iter Succ, n m

>> ++: [(n_1:in Nat),(m_1:in Nat) => (iter(Succ,

>> n_1,m_1):in Nat)]

>> {move 0}

The introduction of iter enables us to define n+m as σm(n).

open

declare k1 in Nat

>> k1: in Nat {move 2}

65

declare k2 in Nat

>> k2: in Nat {move 2}

define Addn k1 k2: k2++n

>> Addn: [(k1_1:in Nat),(k2_1:in Nat) =>

>> ((k2_1 ++ n):in Nat)]

>> {move 1}

close

define ** n m : Iter Addn, n, m

>> **: [(n_1:in Nat),(m_1:in Nat) => (Iter([(k1_3:

>> in Nat),(k2_3:in Nat) => ((k2_3

>> ++ n_1):in Nat)]

>> ,n_1,m_1):in Nat)]

>> {move 0}

The definition of multiplication is in terms of Iter. A nice definition as
(σn)m(0) using iter would be possible if we started the natural numbers at
0, but we are quite interested in starting them at 1.

66

